On the Interaction between Pentacyanocobaltate(II) Anion and Triphenylphosphine

J. B. RAYNOR

Department of Chemistry, The University, Leicester LE1 7RH, U.K. Received January 14, 1977

A recent report of the interaction of various bases with ethanolic solutions of pentacyanocobaltate anion suggested that there was considerable delocalisation of the unpaired electron onto the phosphorus of the triphenylphosphine [1]. Further analysis of the spectrum in the g_1 region where there is considerable overlap between the eight lines due to the ⁵⁹Co nucleus (I = 7/2) each split by the interaction with ³¹P (I = 0.5), suggests that the value for A_{\perp} (³¹P) should be considerably increased. The figure shows the spectrum of a frozen ethanolic solution at 77 K which was analysed by computer simulation using the following spin Hamiltonian parameters:

 $g_{\parallel} = 1.993$, $g_{\perp} = 2.169$, A_{\parallel} (⁵⁹Co) = 82 G, A_{\perp} (⁵⁹Co) = 30 G, A_{\parallel} (³¹P) = 150 G and A_{\perp} (³¹P) = 120 G. Analysis of the ³¹P hyperfine tensor shows that

Analysis of the ³¹P hyperfine tensor shows that the 3s character is 3.5% and 3p character 9.9% with the p:s ratio = 2.8. Analysis of the ⁵⁹Co hyperfine tensor using the standard equations for a d⁷ ion with

TABLE. Calculated Values of Electron Population Parameters for $[Co(CN)_5]^{3-}$ and Various Bases.

Base	$\frac{10^4 P}{cm^{-1}}$	κ	$\frac{-10^4 \kappa P(A_{iso})}{\mathrm{cm}^{-1}}/$	$\% d_{z^2}$	% Ligand
PPh ₃ [1]	171	0.065	-11	67	13.4
None [2]	176	0.083	-15	69	10(CN)
C ₅ H ₅ N [1]	208	0.083	-17	82	

unpaired electron in an a_1 orbital (C_{3v} symmetry) shows that, with negative A_1 , there is slightly less spin density in the d_{z^2} orbital and more delocalised onto the axial ligand (P of triphenylphosphine) than is the case when the only axial ligand is CN (from ¹³C h.f.s.) – see Table.

The p:s ratio of the unpaired electron on phosphorus is close to that expected for a ligand having a lone pair with approximately sp^3 hybridisation. These results are very similar to those reported for the interaction of phenyldimethylphosphine with tetraphenylphosphinecobalt(II) [3] where a p:s ratio of 2.56 was found.

- 1 J. B. Raynor and R. L. Nye, J. Chem. Soc. Dalton, 504 (1976).
- 2 R. J. Booth and W. C. Lui, J. Chem. Phys., 61, 1226 (1974).
- 3 B. B. Wayland and M. E. Abd-Elmageed, J. Am. Chem. Soc., 96, 4809 (1974).

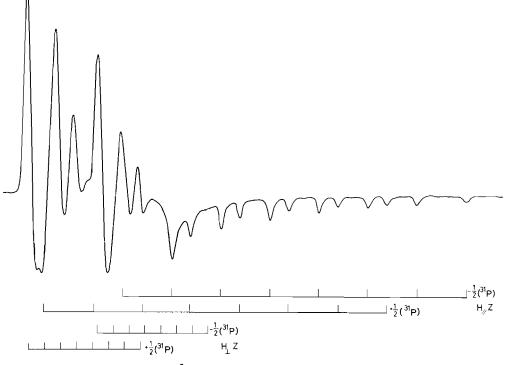


Figure. E.s.r. spectrum of [Co(CN)₅]³⁻ in ethanol with added triphenylphosphine at 77 K.